Identification of epigenetically silenced genes in tumor endothelial cells.
نویسندگان
چکیده
Tumor angiogenesis requires intricate regulation of gene expression in endothelial cells. We recently showed that DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors directly repress endothelial cell growth and tumor angiogenesis, suggesting that epigenetic modifications mediated by DNMTs and HDAC are involved in regulation of endothelial cell gene expression during tumor angiogenesis. To understand the mechanisms behind the epigenetic regulation of tumor angiogenesis, we used microarray analysis to perform a comprehensive screen to identify genes down-regulated in tumor-conditioned versus quiescent endothelial cells, and reexpressed by 5-aza-2'-deoxycytidine (DAC) and trichostatin A (TSA). Among the 81 genes identified, 77% harbored a promoter CpG island. Validation of mRNA levels of a subset of genes confirmed significant down-regulation in tumor-conditioned endothelial cells and reactivation by treatment with a combination of DAC and TSA, as well as by both compounds separately. Silencing of these genes in tumor-conditioned endothelial cells correlated with promoter histone H3 deacetylation and loss of H3 lysine 4 methylation, but did not involve DNA methylation of promoter CpG islands. For six genes, down-regulation in microdissected human tumor endothelium was confirmed. Functional validation by RNA interference revealed that clusterin, fibrillin 1, and quiescin Q6 are negative regulators of endothelial cell growth and angiogenesis. In summary, our data identify novel angiogenesis-suppressing genes that become silenced in tumor-conditioned endothelial cells in association with promoter histone modifications and reactivated by DNMT and HDAC inhibitors through reversal of these epigenetic modifications, providing a mechanism for epigenetic regulation of tumor angiogenesis.
منابع مشابه
Genome-wide analysis of histone H3 acetylation patterns in AML identifies PRDX2 as an epigenetically silenced tumor suppressor gene.
With the use of ChIP on microarray assays in primary leukemia samples, we report that acute myeloid leukemia (AML) blasts exhibit significant alterations in histone H3 acetylation (H3Ac) levels at > 1000 genomic loci compared with CD34(+) progenitor cells. Importantly, core promoter regions tended to have lower H3Ac levels in AML compared with progenitor cells, which suggested that a large numb...
متن کاملIdentification of BMP2 as an epigenetically silenced growth inhibitor in rhabdomyosarcoma.
Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma of infancy and although therapy has improved over the years, mortality is still fairly high. The establishment of new treatments has been hampered by the limited knowledge of the molecular mechanisms driving development of RMS. One characteristic of cancer cells is aberrant DNA methylation, which could lead to silencing of tumor supp...
متن کاملAngiostatic activity of DNA methyltransferase inhibitors.
Inhibitors of DNA methyltransferases (DNMT) and histone deacetylases can reactivate epigenetically silenced tumor suppressor genes and thereby decrease tumor cell growth. Little, however, is known on the effects of these compounds in endothelial cell biology and tumor angiogenesis. Here, we show that the DNMT inhibitors 5-aza-2'-deoxycytidine and zebularine markedly decrease vessel formation in...
متن کاملSynergism between DNA methylation and macroH2A1 occupancy in epigenetic silencing of the tumor suppressor gene p16(CDKN2A)
Promoter hypermethylation and heterochromatinization is a frequent event leading to gene inactivation and tumorigenesis. At the molecular level, inactivation of tumor suppressor genes in cancer has many similarities to the inactive X chromosome in female cells and is defined and maintained by DNA methylation and characteristic histone modifications. In addition, the inactive-X is marked by the ...
متن کاملCurcumin reactivates epigenetically silenced tumor suppressor gene tissue factor pathway inhibitor-2 in hepatocellular carcinoma cells
CURCUMIN REACTIVATES EPIGENETICALL Y SILENCED TUMOR SUPPRESSOR GENE TISSUE FACTOR PATHWAY INHIBITOR-2 IN HEPATOCELLULAR CARCINOMA CELLS Akshata Moghe July 1,2010 Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and the third most fatal, with a rising incidence in the US as a result of the increase in alcoholic liver disease and obesity. Current therapeutic strategies are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 67 9 شماره
صفحات -
تاریخ انتشار 2007